///////////////////////////////////////////////////////////////////////////// // Name: wx/any.h // Purpose: wxAny class // Author: Jaakko Salli // Modified by: // Created: 07/05/2009 // Copyright: (c) wxWidgets team // Licence: wxWindows licence ///////////////////////////////////////////////////////////////////////////// #ifndef _WX_ANY_H_ #define _WX_ANY_H_ #include "wx/defs.h" #if wxUSE_ANY #include <new> // for placement new #include "wx/string.h" #include "wx/meta/if.h" #include "wx/typeinfo.h" #include "wx/list.h" // Size of the wxAny value buffer. enum { WX_ANY_VALUE_BUFFER_SIZE = 16 }; union wxAnyValueBuffer { union Alignment { #if wxHAS_INT64 wxInt64 m_int64; #endif long double m_longDouble; void ( *m_funcPtr )(void); void ( wxAnyValueBuffer::*m_mFuncPtr )(void); } m_alignment; void* m_ptr; wxByte m_buffer[WX_ANY_VALUE_BUFFER_SIZE]; wxAnyValueBuffer() { m_ptr = NULL; } }; // // wxAnyValueType is base class for value type functionality for C++ data // types used with wxAny. Usually the default template (wxAnyValueTypeImpl<>) // will create a satisfactory wxAnyValueType implementation for a data type. // class WXDLLIMPEXP_BASE wxAnyValueType { WX_DECLARE_ABSTRACT_TYPEINFO(wxAnyValueType) public: /** Default constructor. */ wxAnyValueType() { } /** Destructor. */ virtual ~wxAnyValueType() { } /** This function is used for internal type matching. */ virtual bool IsSameType(const wxAnyValueType* otherType) const = 0; /** This function is called every time the data in wxAny buffer needs to be freed. */ virtual void DeleteValue(wxAnyValueBuffer& buf) const = 0; /** Implement this for buffer-to-buffer copy. @param src This is the source data buffer. @param dst This is the destination data buffer that is in either uninitialized or freed state. */ virtual void CopyBuffer(const wxAnyValueBuffer& src, wxAnyValueBuffer& dst) const = 0; /** Convert value into buffer of different type. Return false if not possible. */ virtual bool ConvertValue(const wxAnyValueBuffer& src, wxAnyValueType* dstType, wxAnyValueBuffer& dst) const = 0; /** Use this template function for checking if wxAnyValueType represents a specific C++ data type. @see wxAny::CheckType() */ template <typename T> bool CheckType() const; #if wxUSE_EXTENDED_RTTI virtual const wxTypeInfo* GetTypeInfo() const = 0; #endif private: }; // // We need to allocate wxAnyValueType instances in heap, and need to use // scoped ptr to properly deallocate them in dynamic library use cases. // Here we have a minimal specialized scoped ptr implementation to deal // with various compiler-specific problems with template class' static // member variable of template type with explicit constructor which // is initialized in global scope. // class wxAnyValueTypeScopedPtr { public: wxAnyValueTypeScopedPtr(wxAnyValueType* ptr) : m_ptr(ptr) { } ~wxAnyValueTypeScopedPtr() { delete m_ptr; } wxAnyValueType* get() const { return m_ptr; } private: wxAnyValueType* m_ptr; }; // Deprecated macro for checking the type which was originally introduced for // MSVC6 compatibility and is not needed any longer now that this compiler is // not supported any more. #define wxANY_VALUE_TYPE_CHECK_TYPE(valueTypePtr, T) \ wxAnyValueTypeImpl<T>::IsSameClass(valueTypePtr) /** Helper macro for defining user value types. Even though C++ RTTI would be fully available to use, we'd have to facilitate sub-type system which allows, for instance, wxAny with signed short '15' to be treated equal to wxAny with signed long long '15'. Having sm_instance is important here. NB: We really need to have wxAnyValueType instances allocated in heap. They are stored as static template member variables, and with them we just can't be too careful (eg. not allocating them in heap broke the type identification in GCC). */ #define WX_DECLARE_ANY_VALUE_TYPE(CLS) \ friend class wxAny; \ WX_DECLARE_TYPEINFO_INLINE(CLS) \ public: \ static bool IsSameClass(const wxAnyValueType* otherType) \ { \ return AreSameClasses(*sm_instance.get(), *otherType); \ } \ virtual bool IsSameType(const wxAnyValueType* otherType) const wxOVERRIDE \ { \ return IsSameClass(otherType); \ } \ private: \ static bool AreSameClasses(const wxAnyValueType& a, const wxAnyValueType& b) \ { \ return wxTypeId(a) == wxTypeId(b); \ } \ static wxAnyValueTypeScopedPtr sm_instance; \ public: \ static wxAnyValueType* GetInstance() \ { \ return sm_instance.get(); \ } #define WX_IMPLEMENT_ANY_VALUE_TYPE(CLS) \ wxAnyValueTypeScopedPtr CLS::sm_instance(new CLS()); /** Following are helper classes for the wxAnyValueTypeImplBase. */ namespace wxPrivate { template<typename T> class wxAnyValueTypeOpsInplace { public: static void DeleteValue(wxAnyValueBuffer& buf) { GetValue(buf).~T(); } static void SetValue(const T& value, wxAnyValueBuffer& buf) { // Use placement new, taking care to avoid running into problems with // "new" redefinition in wx/msw/msvcrt.h. #ifdef WXDEBUG_NEW #undef new #endif void* const place = buf.m_buffer; ::new(place) T(value); #ifdef WXDEBUG_NEW #define new WXDEBUG_NEW #endif } static const T& GetValue(const wxAnyValueBuffer& buf) { // Use a union to avoid undefined behaviour (and gcc -Wstrict-alias // warnings about it) which would occur if we just casted a wxByte // pointer to a T one. union { const T* ptr; const wxByte *buf; } u; u.buf = buf.m_buffer; return *u.ptr; } }; template<typename T> class wxAnyValueTypeOpsGeneric { public: template<typename T2> class DataHolder { public: DataHolder(const T2& value) : m_value(value) { } virtual ~DataHolder() { } T2 m_value; private: wxDECLARE_NO_COPY_CLASS(DataHolder); }; static void DeleteValue(wxAnyValueBuffer& buf) { DataHolder<T>* holder = static_cast<DataHolder<T>*>(buf.m_ptr); delete holder; } static void SetValue(const T& value, wxAnyValueBuffer& buf) { DataHolder<T>* holder = new DataHolder<T>(value); buf.m_ptr = holder; } static const T& GetValue(const wxAnyValueBuffer& buf) { DataHolder<T>* holder = static_cast<DataHolder<T>*>(buf.m_ptr); return holder->m_value; } }; template <typename T> struct wxAnyAsImpl; } // namespace wxPrivate /** Intermediate template for the generic value type implementation. We can derive from this same value type for multiple actual types (for instance, we can have wxAnyValueTypeImplInt for all signed integer types), and also easily implement specialized templates with specific dynamic type conversion. */ template<typename T> class wxAnyValueTypeImplBase : public wxAnyValueType { typedef typename wxIf< sizeof(T) <= WX_ANY_VALUE_BUFFER_SIZE, wxPrivate::wxAnyValueTypeOpsInplace<T>, wxPrivate::wxAnyValueTypeOpsGeneric<T> >::value Ops; public: wxAnyValueTypeImplBase() : wxAnyValueType() { } virtual ~wxAnyValueTypeImplBase() { } virtual void DeleteValue(wxAnyValueBuffer& buf) const wxOVERRIDE { Ops::DeleteValue(buf); } virtual void CopyBuffer(const wxAnyValueBuffer& src, wxAnyValueBuffer& dst) const wxOVERRIDE { Ops::SetValue(Ops::GetValue(src), dst); } /** It is important to reimplement this in any specialized template classes that inherit from wxAnyValueTypeImplBase. */ static void SetValue(const T& value, wxAnyValueBuffer& buf) { Ops::SetValue(value, buf); } /** It is important to reimplement this in any specialized template classes that inherit from wxAnyValueTypeImplBase. */ static const T& GetValue(const wxAnyValueBuffer& buf) { return Ops::GetValue(buf); } #if wxUSE_EXTENDED_RTTI virtual const wxTypeInfo* GetTypeInfo() const { return wxGetTypeInfo((T*)NULL); } #endif }; /* Generic value type template. Note that bulk of the implementation resides in wxAnyValueTypeImplBase. */ template<typename T> class wxAnyValueTypeImpl : public wxAnyValueTypeImplBase<T> { WX_DECLARE_ANY_VALUE_TYPE(wxAnyValueTypeImpl<T>) public: wxAnyValueTypeImpl() : wxAnyValueTypeImplBase<T>() { } virtual ~wxAnyValueTypeImpl() { } virtual bool ConvertValue(const wxAnyValueBuffer& src, wxAnyValueType* dstType, wxAnyValueBuffer& dst) const wxOVERRIDE { wxUnusedVar(src); wxUnusedVar(dstType); wxUnusedVar(dst); return false; } }; template<typename T> wxAnyValueTypeScopedPtr wxAnyValueTypeImpl<T>::sm_instance = new wxAnyValueTypeImpl<T>(); // // Helper macro for using same base value type implementation for multiple // actual C++ data types. // #define _WX_ANY_DEFINE_SUB_TYPE(T, CLSTYPE) \ template<> \ class wxAnyValueTypeImpl<T> : public wxAnyValueTypeImpl##CLSTYPE \ { \ typedef wxAnyBase##CLSTYPE##Type UseDataType; \ public: \ wxAnyValueTypeImpl() : wxAnyValueTypeImpl##CLSTYPE() { } \ virtual ~wxAnyValueTypeImpl() { } \ static void SetValue(const T& value, wxAnyValueBuffer& buf) \ { \ void* voidPtr = reinterpret_cast<void*>(&buf.m_buffer[0]); \ UseDataType* dptr = reinterpret_cast<UseDataType*>(voidPtr); \ *dptr = static_cast<UseDataType>(value); \ } \ static T GetValue(const wxAnyValueBuffer& buf) \ { \ const void* voidPtr = \ reinterpret_cast<const void*>(&buf.m_buffer[0]); \ const UseDataType* sptr = \ reinterpret_cast<const UseDataType*>(voidPtr); \ return static_cast<T>(*sptr); \ } #if wxUSE_EXTENDED_RTTI #define WX_ANY_DEFINE_SUB_TYPE(T, CLSTYPE) \ _WX_ANY_DEFINE_SUB_TYPE(T, CLSTYPE)\ virtual const wxTypeInfo* GetTypeInfo() const \ { \ return wxGetTypeInfo((T*)NULL); \ } \ }; #else #define WX_ANY_DEFINE_SUB_TYPE(T, CLSTYPE) \ _WX_ANY_DEFINE_SUB_TYPE(T, CLSTYPE)\ }; #endif // // Integer value types // #ifdef wxLongLong_t typedef wxLongLong_t wxAnyBaseIntType; typedef wxULongLong_t wxAnyBaseUintType; #else typedef long wxAnyBaseIntType; typedef unsigned long wxAnyBaseUintType; #endif class WXDLLIMPEXP_BASE wxAnyValueTypeImplInt : public wxAnyValueTypeImplBase<wxAnyBaseIntType> { WX_DECLARE_ANY_VALUE_TYPE(wxAnyValueTypeImplInt) public: wxAnyValueTypeImplInt() : wxAnyValueTypeImplBase<wxAnyBaseIntType>() { } virtual ~wxAnyValueTypeImplInt() { } virtual bool ConvertValue(const wxAnyValueBuffer& src, wxAnyValueType* dstType, wxAnyValueBuffer& dst) const wxOVERRIDE; }; class WXDLLIMPEXP_BASE wxAnyValueTypeImplUint : public wxAnyValueTypeImplBase<wxAnyBaseUintType> { WX_DECLARE_ANY_VALUE_TYPE(wxAnyValueTypeImplUint) public: wxAnyValueTypeImplUint() : wxAnyValueTypeImplBase<wxAnyBaseUintType>() { } virtual ~wxAnyValueTypeImplUint() { } virtual bool ConvertValue(const wxAnyValueBuffer& src, wxAnyValueType* dstType, wxAnyValueBuffer& dst) const wxOVERRIDE; }; WX_ANY_DEFINE_SUB_TYPE(signed long, Int) WX_ANY_DEFINE_SUB_TYPE(signed int, Int) WX_ANY_DEFINE_SUB_TYPE(signed short, Int) WX_ANY_DEFINE_SUB_TYPE(signed char, Int) #ifdef wxLongLong_t WX_ANY_DEFINE_SUB_TYPE(wxLongLong_t, Int) #endif WX_ANY_DEFINE_SUB_TYPE(unsigned long, Uint) WX_ANY_DEFINE_SUB_TYPE(unsigned int, Uint) WX_ANY_DEFINE_SUB_TYPE(unsigned short, Uint) WX_ANY_DEFINE_SUB_TYPE(unsigned char, Uint) #ifdef wxLongLong_t WX_ANY_DEFINE_SUB_TYPE(wxULongLong_t, Uint) #endif // // This macro is used in header, but then in source file we must have: // WX_IMPLEMENT_ANY_VALUE_TYPE(wxAnyValueTypeImpl##TYPENAME) // #define _WX_ANY_DEFINE_CONVERTIBLE_TYPE(T, TYPENAME, CONVFUNC, GV) \ class WXDLLIMPEXP_BASE wxAnyValueTypeImpl##TYPENAME : \ public wxAnyValueTypeImplBase<T> \ { \ WX_DECLARE_ANY_VALUE_TYPE(wxAnyValueTypeImpl##TYPENAME) \ public: \ wxAnyValueTypeImpl##TYPENAME() : \ wxAnyValueTypeImplBase<T>() { } \ virtual ~wxAnyValueTypeImpl##TYPENAME() { } \ virtual bool ConvertValue(const wxAnyValueBuffer& src, \ wxAnyValueType* dstType, \ wxAnyValueBuffer& dst) const wxOVERRIDE \ { \ GV value = GetValue(src); \ return CONVFUNC(value, dstType, dst); \ } \ }; \ template<> \ class wxAnyValueTypeImpl<T> : public wxAnyValueTypeImpl##TYPENAME \ { \ public: \ wxAnyValueTypeImpl() : wxAnyValueTypeImpl##TYPENAME() { } \ virtual ~wxAnyValueTypeImpl() { } \ }; #define WX_ANY_DEFINE_CONVERTIBLE_TYPE(T, TYPENAME, CONVFUNC, BT) \ _WX_ANY_DEFINE_CONVERTIBLE_TYPE(T, TYPENAME, CONVFUNC, BT) \ #define WX_ANY_DEFINE_CONVERTIBLE_TYPE_BASE(T, TYPENAME, CONVFUNC) \ _WX_ANY_DEFINE_CONVERTIBLE_TYPE(T, TYPENAME, \ CONVFUNC, const T&) \ // // String value type // // Convert wxString to destination wxAny value type extern WXDLLIMPEXP_BASE bool wxAnyConvertString(const wxString& value, wxAnyValueType* dstType, wxAnyValueBuffer& dst); WX_ANY_DEFINE_CONVERTIBLE_TYPE_BASE(wxString, wxString, wxAnyConvertString) #ifndef wxNO_IMPLICIT_WXSTRING_ENCODING WX_ANY_DEFINE_CONVERTIBLE_TYPE(const char*, ConstCharPtr, wxAnyConvertString, wxString) #endif WX_ANY_DEFINE_CONVERTIBLE_TYPE(const wchar_t*, ConstWchar_tPtr, wxAnyConvertString, wxString) // // Bool value type // template<> class WXDLLIMPEXP_BASE wxAnyValueTypeImpl<bool> : public wxAnyValueTypeImplBase<bool> { WX_DECLARE_ANY_VALUE_TYPE(wxAnyValueTypeImpl<bool>) public: wxAnyValueTypeImpl() : wxAnyValueTypeImplBase<bool>() { } virtual ~wxAnyValueTypeImpl() { } virtual bool ConvertValue(const wxAnyValueBuffer& src, wxAnyValueType* dstType, wxAnyValueBuffer& dst) const wxOVERRIDE; }; // // Floating point value type // class WXDLLIMPEXP_BASE wxAnyValueTypeImplDouble : public wxAnyValueTypeImplBase<double> { WX_DECLARE_ANY_VALUE_TYPE(wxAnyValueTypeImplDouble) public: wxAnyValueTypeImplDouble() : wxAnyValueTypeImplBase<double>() { } virtual ~wxAnyValueTypeImplDouble() { } virtual bool ConvertValue(const wxAnyValueBuffer& src, wxAnyValueType* dstType, wxAnyValueBuffer& dst) const wxOVERRIDE; }; // WX_ANY_DEFINE_SUB_TYPE requires this typedef double wxAnyBaseDoubleType; WX_ANY_DEFINE_SUB_TYPE(float, Double) WX_ANY_DEFINE_SUB_TYPE(double, Double) // // Defines a dummy wxAnyValueTypeImpl<> with given export // declaration. This is needed if a class is used with // wxAny in both user shared library and application. // #define wxDECLARE_ANY_TYPE(CLS, DECL) \ template<> \ class DECL wxAnyValueTypeImpl<CLS> : \ public wxAnyValueTypeImplBase<CLS> \ { \ WX_DECLARE_ANY_VALUE_TYPE(wxAnyValueTypeImpl<CLS>) \ public: \ wxAnyValueTypeImpl() : \ wxAnyValueTypeImplBase<CLS>() { } \ virtual ~wxAnyValueTypeImpl() { } \ \ virtual bool ConvertValue(const wxAnyValueBuffer& src, \ wxAnyValueType* dstType, \ wxAnyValueBuffer& dst) const wxOVERRIDE \ { \ wxUnusedVar(src); \ wxUnusedVar(dstType); \ wxUnusedVar(dst); \ return false; \ } \ }; // Make sure some of wx's own types get the right wxAnyValueType export // (this is needed only for types that are referred to from wxBase. // currently we may not use any of these types from there, but let's // use the macro on at least one to make sure it compiles since we can't // really test it properly in unit tests since a separate DLL would // be needed). #if wxUSE_DATETIME #include "wx/datetime.h" wxDECLARE_ANY_TYPE(wxDateTime, WXDLLIMPEXP_BASE) #endif //#include "wx/object.h" //wxDECLARE_ANY_TYPE(wxObject*, WXDLLIMPEXP_BASE) //#include "wx/arrstr.h" //wxDECLARE_ANY_TYPE(wxArrayString, WXDLLIMPEXP_BASE) #if wxUSE_VARIANT class WXDLLIMPEXP_FWD_BASE wxAnyToVariantRegistration; // Because of header inter-dependencies, cannot include this earlier #include "wx/variant.h" // // wxVariantData* data type implementation. For cases when appropriate // wxAny<->wxVariant conversion code is missing. // class WXDLLIMPEXP_BASE wxAnyValueTypeImplVariantData : public wxAnyValueTypeImplBase<wxVariantData*> { WX_DECLARE_ANY_VALUE_TYPE(wxAnyValueTypeImplVariantData) public: wxAnyValueTypeImplVariantData() : wxAnyValueTypeImplBase<wxVariantData*>() { } virtual ~wxAnyValueTypeImplVariantData() { } virtual void DeleteValue(wxAnyValueBuffer& buf) const wxOVERRIDE { wxVariantData* data = static_cast<wxVariantData*>(buf.m_ptr); if ( data ) data->DecRef(); } virtual void CopyBuffer(const wxAnyValueBuffer& src, wxAnyValueBuffer& dst) const wxOVERRIDE { wxVariantData* data = static_cast<wxVariantData*>(src.m_ptr); if ( data ) data->IncRef(); dst.m_ptr = data; } static void SetValue(wxVariantData* value, wxAnyValueBuffer& buf) { value->IncRef(); buf.m_ptr = value; } static wxVariantData* GetValue(const wxAnyValueBuffer& buf) { return static_cast<wxVariantData*>(buf.m_ptr); } virtual bool ConvertValue(const wxAnyValueBuffer& src, wxAnyValueType* dstType, wxAnyValueBuffer& dst) const wxOVERRIDE { wxUnusedVar(src); wxUnusedVar(dstType); wxUnusedVar(dst); return false; } }; template<> class wxAnyValueTypeImpl<wxVariantData*> : public wxAnyValueTypeImplVariantData { public: wxAnyValueTypeImpl() : wxAnyValueTypeImplVariantData() { } virtual ~wxAnyValueTypeImpl() { } }; #endif // wxUSE_VARIANT /* Let's define a discrete Null value so we don't have to really ever check if wxAny.m_type pointer is NULL or not. This is an optimization, mostly. Implementation of this value type is "hidden" in the source file. */ extern WXDLLIMPEXP_DATA_BASE(wxAnyValueType*) wxAnyNullValueType; // // We need to implement custom signed/unsigned int equals operators // for signed/unsigned (eg. wxAny(128UL) == 128L) comparisons to work. #define WXANY_IMPLEMENT_INT_EQ_OP(TS, TUS) \ bool operator==(TS value) const \ { \ if ( wxAnyValueTypeImpl<TS>::IsSameClass(m_type) ) \ return (value == static_cast<TS> \ (wxAnyValueTypeImpl<TS>::GetValue(m_buffer))); \ if ( wxAnyValueTypeImpl<TUS>::IsSameClass(m_type) ) \ return (value == static_cast<TS> \ (wxAnyValueTypeImpl<TUS>::GetValue(m_buffer))); \ return false; \ } \ bool operator==(TUS value) const \ { \ if ( wxAnyValueTypeImpl<TUS>::IsSameClass(m_type) ) \ return (value == static_cast<TUS> \ (wxAnyValueTypeImpl<TUS>::GetValue(m_buffer))); \ if ( wxAnyValueTypeImpl<TS>::IsSameClass(m_type) ) \ return (value == static_cast<TUS> \ (wxAnyValueTypeImpl<TS>::GetValue(m_buffer))); \ return false; \ } #if wxUSE_VARIANT // Note that the following functions are implemented outside wxAny class // so that it can reside entirely in header and lack the export declaration. // Helper function used to associate wxAnyValueType with a wxVariantData. extern WXDLLIMPEXP_BASE void wxPreRegisterAnyToVariant(wxAnyToVariantRegistration* reg); // This function performs main wxAny to wxVariant conversion duties. extern WXDLLIMPEXP_BASE bool wxConvertAnyToVariant(const wxAny& any, wxVariant* variant); #endif // wxUSE_VARIANT // // The wxAny class represents a container for any type. A variant's value // can be changed at run time, possibly to a different type of value. // // As standard, wxAny can store value of almost any type, in a fairly // optimal manner even. // class wxAny { public: /** Default constructor. */ wxAny() { m_type = wxAnyNullValueType; } /** Destructor. */ ~wxAny() { m_type->DeleteValue(m_buffer); } //@{ /** Various constructors. */ template<typename T> wxAny(const T& value) { m_type = wxAnyValueTypeImpl<T>::sm_instance.get(); wxAnyValueTypeImpl<T>::SetValue(value, m_buffer); } // These two constructors are needed to deal with string literals #ifndef wxNO_IMPLICIT_WXSTRING_ENCODING wxAny(const char* value) { m_type = wxAnyValueTypeImpl<const char*>::sm_instance.get(); wxAnyValueTypeImpl<const char*>::SetValue(value, m_buffer); } #endif wxAny(const wchar_t* value) { m_type = wxAnyValueTypeImpl<const wchar_t*>::sm_instance.get(); wxAnyValueTypeImpl<const wchar_t*>::SetValue(value, m_buffer); } wxAny(const wxAny& any) { m_type = wxAnyNullValueType; AssignAny(any); } #if wxUSE_VARIANT wxAny(const wxVariant& variant) { m_type = wxAnyNullValueType; AssignVariant(variant); } #endif //@} /** Use this template function for checking if this wxAny holds a specific C++ data type. @see wxAnyValueType::CheckType() */ template <typename T> bool CheckType() const { return m_type->CheckType<T>(); } /** Returns the value type as wxAnyValueType instance. @remarks You cannot reliably test whether two wxAnys are of same value type by simply comparing return values of wxAny::GetType(). Instead, use wxAny::HasSameType(). @see HasSameType() */ const wxAnyValueType* GetType() const { return m_type; } /** Returns @true if this and another wxAny have the same value type. */ bool HasSameType(const wxAny& other) const { return GetType()->IsSameType(other.GetType()); } /** Tests if wxAny is null (that is, whether there is no data). */ bool IsNull() const { return (m_type == wxAnyNullValueType); } /** Makes wxAny null (that is, clears it). */ void MakeNull() { m_type->DeleteValue(m_buffer); m_type = wxAnyNullValueType; } //@{ /** Assignment operators. */ template<typename T> wxAny& operator=(const T &value) { m_type->DeleteValue(m_buffer); m_type = wxAnyValueTypeImpl<T>::sm_instance.get(); wxAnyValueTypeImpl<T>::SetValue(value, m_buffer); return *this; } wxAny& operator=(const wxAny &any) { if (this != &any) AssignAny(any); return *this; } #if wxUSE_VARIANT wxAny& operator=(const wxVariant &variant) { AssignVariant(variant); return *this; } #endif // These two operators are needed to deal with string literals #ifndef wxNO_IMPLICIT_WXSTRING_ENCODING wxAny& operator=(const char* value) { Assign(value); return *this; } #endif wxAny& operator=(const wchar_t* value) { Assign(value); return *this; } //@{ /** Equality operators. */ bool operator==(const wxString& value) const { wxString value2; if ( !GetAs(&value2) ) return false; return value == value2; } #ifndef wxNO_IMPLICIT_WXSTRING_ENCODING bool operator==(const char* value) const { return (*this) == wxString(value); } #endif // wxNO_IMPLICIT_WXSTRING_ENCODING bool operator==(const wchar_t* value) const { return (*this) == wxString(value); } // // We need to implement custom signed/unsigned int equals operators // for signed/unsigned (eg. wxAny(128UL) == 128L) comparisons to work. WXANY_IMPLEMENT_INT_EQ_OP(signed char, unsigned char) WXANY_IMPLEMENT_INT_EQ_OP(signed short, unsigned short) WXANY_IMPLEMENT_INT_EQ_OP(signed int, unsigned int) WXANY_IMPLEMENT_INT_EQ_OP(signed long, unsigned long) #ifdef wxLongLong_t WXANY_IMPLEMENT_INT_EQ_OP(wxLongLong_t, wxULongLong_t) #endif wxGCC_WARNING_SUPPRESS(float-equal) bool operator==(float value) const { if ( !wxAnyValueTypeImpl<float>::IsSameClass(m_type) ) return false; return value == static_cast<float> (wxAnyValueTypeImpl<float>::GetValue(m_buffer)); } bool operator==(double value) const { if ( !wxAnyValueTypeImpl<double>::IsSameClass(m_type) ) return false; return value == static_cast<double> (wxAnyValueTypeImpl<double>::GetValue(m_buffer)); } wxGCC_WARNING_RESTORE(float-equal) bool operator==(bool value) const { if ( !wxAnyValueTypeImpl<bool>::IsSameClass(m_type) ) return false; return value == (wxAnyValueTypeImpl<bool>::GetValue(m_buffer)); } //@} //@{ /** Inequality operators (implement as template). */ template<typename T> bool operator!=(const T& value) const { return !((*this) == value); } //@} /** This template function converts wxAny into given type. In most cases no type conversion is performed, so if the type is incorrect an assertion failure will occur. @remarks For convenience, conversion is done when T is wxString. This is useful when a string literal (which are treated as const char* and const wchar_t*) has been assigned to wxAny. */ template <typename T> T As(T* = NULL) const { return wxPrivate::wxAnyAsImpl<T>::DoAs(*this); } // Semi private helper: get the value without coercion, for all types. template <typename T> T RawAs() const { if ( !wxAnyValueTypeImpl<T>::IsSameClass(m_type) ) { wxFAIL_MSG("Incorrect or non-convertible data type"); } return static_cast<T>(wxAnyValueTypeImpl<T>::GetValue(m_buffer)); } #if wxUSE_EXTENDED_RTTI const wxTypeInfo* GetTypeInfo() const { return m_type->GetTypeInfo(); } #endif /** Template function that retrieves and converts the value of this variant to the type that T* value is. @return Returns @true if conversion was successful. */ template<typename T> bool GetAs(T* value) const { if ( !wxAnyValueTypeImpl<T>::IsSameClass(m_type) ) { wxAnyValueType* otherType = wxAnyValueTypeImpl<T>::sm_instance.get(); wxAnyValueBuffer temp_buf; if ( !m_type->ConvertValue(m_buffer, otherType, temp_buf) ) return false; *value = static_cast<T>(wxAnyValueTypeImpl<T>::GetValue(temp_buf)); otherType->DeleteValue(temp_buf); return true; } *value = static_cast<T>(wxAnyValueTypeImpl<T>::GetValue(m_buffer)); return true; } #if wxUSE_VARIANT // GetAs() wxVariant specialization bool GetAs(wxVariant* value) const { return wxConvertAnyToVariant(*this, value); } #endif private: #ifdef wxNO_IMPLICIT_WXSTRING_ENCODING wxAny(const char*); // Disabled wxAny& operator=(const char *&value); // Disabled wxAny& operator=(const char value[]); // Disabled wxAny& operator==(const char *value); // Disabled #endif // Assignment functions void AssignAny(const wxAny& any) { // Must delete value - CopyBuffer() never does that m_type->DeleteValue(m_buffer); wxAnyValueType* newType = any.m_type; if ( !newType->IsSameType(m_type) ) m_type = newType; newType->CopyBuffer(any.m_buffer, m_buffer); } #if wxUSE_VARIANT void AssignVariant(const wxVariant& variant) { wxVariantData* data = variant.GetData(); if ( data && data->GetAsAny(this) ) return; m_type->DeleteValue(m_buffer); if ( variant.IsNull() ) { // Init as Null m_type = wxAnyNullValueType; } else { // If everything else fails, wrap the whole wxVariantData m_type = wxAnyValueTypeImpl<wxVariantData*>::sm_instance.get(); wxAnyValueTypeImpl<wxVariantData*>::SetValue(data, m_buffer); } } #endif template<typename T> void Assign(const T &value) { m_type->DeleteValue(m_buffer); m_type = wxAnyValueTypeImpl<T>::sm_instance.get(); wxAnyValueTypeImpl<T>::SetValue(value, m_buffer); } // Data wxAnyValueBuffer m_buffer; wxAnyValueType* m_type; }; namespace wxPrivate { // Dispatcher for template wxAny::As() implementation which is different for // wxString and all the other types: the generic implementation check if the // value is of the right type and returns it. template <typename T> struct wxAnyAsImpl { static T DoAs(const wxAny& any) { return any.RawAs<T>(); } }; // Specialization for wxString does coercion. template <> struct wxAnyAsImpl<wxString> { static wxString DoAs(const wxAny& any) { wxString value; if ( !any.GetAs(&value) ) { wxFAIL_MSG("Incorrect or non-convertible data type"); } return value; } }; } // See comment for wxANY_VALUE_TYPE_CHECK_TYPE. #define wxANY_CHECK_TYPE(any, T) \ wxANY_VALUE_TYPE_CHECK_TYPE((any).GetType(), T) // This macro shouldn't be used any longer for the same reasons as // wxANY_VALUE_TYPE_CHECK_TYPE(), just call As() directly. #define wxANY_AS(any, T) \ (any).As(static_cast<T*>(NULL)) template<typename T> inline bool wxAnyValueType::CheckType() const { return wxAnyValueTypeImpl<T>::IsSameClass(this); } WX_DECLARE_LIST_WITH_DECL(wxAny, wxAnyList, class WXDLLIMPEXP_BASE); #endif // wxUSE_ANY #endif // _WX_ANY_H_